Proving that a polynomial ring in one variable over a field is a principal ideal domain can be done by means of the Euclidean algorithm, but this does not extend to more variables. However, if the variables are not allowed to commute, giving a free associative algebra, then there is a generalization, the weak algorithm, which can be used to prove that all one-sided ideals are free. This book presents the theory of free ideal rings (firs) in detail. Particular emphasis is placed on rings with a weak algorithm, exemplified by free associative algebras. There is also a full account of localization which is treated for general rings but the features arising in firs are given special attention. Each section has a number of exercises, including some open problems, and each chapter ends in a historical note.
Peso: | 0,961 kg |
Número de páginas: | 594 |
Ano de edição: | 2006 |
ISBN 10: | 0521853370 |
ISBN 13: | 9780521853378 |
Altura: | 3 |
Largura: | 15 |
Comprimento: | 23 |
Idioma : | Inglês |
Tipo de produto : | Livro |
Assuntos : | Matemática |
Nós usamos cookies para melhorar a sua experiência no site e, ao continuar navegando, você concorda com essas condições. Acesse o nosso Portal de Privacidade para visualizar nossas Política de Privacidade, Política de Cookies e Termo de Compromisso e Uso do Site.
Avaliações